57 research outputs found

    Assessing opportunities to increase global food production within the safe operating space for human freshwater use

    Get PDF
    Die Landwirtschaft ist heute der wichtigste Treiber der globalen Degradation von Ökosystemen. Es existiert jedoch wenig konkretes Wissen, wie Ökosysteme zu schützen sind und gleichzeitig die Nahrungsproduktion für die wachsende Weltbevölkerung gesichert werden kann. In dieser Dissertation untersuche ich Optimierungsmöglichkeiten im landwirtschaftlichen Wassermanagement. Ich quantifiziere praxisorientierte Verbesserungen der Regenwassernutzung und Optimierungen von Bewässerungssystemen, unter Einhaltung der „environmental flow requirements“ (EFRs). Um diese komplexen Interaktionen zu untersuchen, entwickle ich ein agro-hydrologisches Modell auf Basis detaillierter, mechanistischer Prozessabbildung weiter. Erstens, 39% der derzeitigen Wasserentnahmen für Bewässerung sind nicht nachhaltig und somit auf Kosten der Ökosysteme. Zweitens, solche lokalen Wasserentnahmegrenzen legen nahe, dass die globale Grenze für den menschlichen Wasserverbrauch deutlich niedriger liegt, als bisher angenommen (2800 vs 4000 km3yr-1). Drittens, die Implementierung von EFRs würde die landwirtschaftliche Produktion erheblich beeinträchtigen, mit >20% in stark bewässerten Gebieten. Verbesserte Nutzung des Niederschlagswassers und die Optimierung von Bewässerungssystemen, können die weltweite Nahrungsmittelproduktion allerdings um rund 40% nachhaltig steigern - ausreichend, um die Nahrungsmittellücke der wachsenden Weltbevölkerung bis 2050 zu halbieren. Zusammenfassend stellt diese Arbeit die erste umfassende und systematische Einschätzung globaler Potentiale der nachhaltigen Intensivierung der Landwirtschaft aus der Wasserperspektive dar. Die in dieser Arbeit vorgebrachten innovativen und quantitativen Erkenntnisse legen nahe, dass das Potential der diskutierten Interventionen höhere politische Aufmerksamkeit erfahren sollte. Meine Ergebnisse können eine konkretere Diskussion zur Umsetzung der Sustainable Development Goals untermauern.Agriculture is today''s most important driver of ecosystem degradation across scales. However, there is little evidence on how to attain the historic twin-challenge of maintaining environmental integrity while producing enough food for a growing world population. In this thesis, I assess opportunities in agricultural water management to reconcile future food needs with environmental limits to water use. I explore solution-oriented ways to improve rainfed and irrigation systems alike, while safeguarding environmental flows (EFRs). To study complex interactions quantitatively, I advanced a state-of-the-art global modeling framework based on detailed, mechanistic process representation. First, a systematic upscaling of EFRs to global coverage indicates that 39% of current freshwater withdrawals for irrigation are unsustainable and occur at the cost of ecosystems. Second, accounting for EFRs indicates that the planetary boundary for freshwater use might be notably lower (2800 vs. 4000 km3yr-1) than expected. Third, maintaining EFRs would significantly affect food production, cutting >20% of total kcal production across intensely irrigated areas. Fourth, improving irrigation systems in combination with optimizing the use of precipitation water, provides effective and accessible measures to compensate for adverse impacts from protecting EFRs and climate change. Such integrated interventions could sustainably intensify global food production (+40% kcal) to the degree sufficient to halve the global food gap by 2050. In conclusion, this thesis provides the first comprehensive and systematic assessment of hitherto largely unquantified water opportunities in sustainable intensification of agriculture. While requiring corroboration by finer-scale research, the innovative quantitative foundation provided in this thesis suggests that farm water management merits a rise in political attention, and it can inform a more comprehensive discussion of related SDG target interactions

    Freshwater Requirements of Large-Scale Bioenergy Plantations for Limiting Global Warming to 1.5C

    Get PDF
    Limiting mean global warming to well below 2 C will probably require substantial negative emissions (NEs) within the 21st century. To achieve these, bioenergy plantations with subsequent carbon capture and storage (BECCS) may have to be implemented at a large scale. Irrigation of these plantations might be necessary to increase the yield, which is likely to put further pressure on already stressed freshwater systems. Conversely, the potential of bioenergy plantations (BPs) dedicated to achieving NEs through CO2 assimilation may be limited in regions with low freshwater availability. This paper provides a first-order quantification of the biophysical potentials of BECCS as a negative emission technology contribution to reaching the 1.5 C warming target, as constrained by associated water availabilities and requirements. Using a global biosphere model, we analyze the availability of freshwater for irrigation of BPs designed to meet the projected NEs to fulfill the 1.5 C target, spatially explicitly on areas not reserved for ecosystem conservation or agriculture. We take account of the simultaneous water demands for agriculture, industries, and households and also account for environmental flow requirements (EFRs) needed to safeguard aquatic ecosystems. Furthermore, we assess to what extent different forms of improved water management on the suggested BPs and on cropland may help to reduce the freshwater abstractions. Results indicate that global water withdrawals for irrigation of BPs range between ~400 and ~3000 km(exp 3) yr(exp -1), depending on the scenario and the conversion efficiency of the carbon capture and storage process. Consideration of EFRs reduces the NE potential significantly, but can partly be compensated for by improved on-field water management

    Freshwater requirements of large-scale bioenergy plantations for limiting global warming to 1.5 °C

    Get PDF
    Limiting mean global warming to well below 2 °C will probably require substantial negative emissions (NEs) within the 21st century. To achieve these, bioenergy plantations with subsequent carbon capture and storage (BECCS) may have to be implemented at a large scale. Irrigation of these plantations might be necessary to increase the yield, which is likely to put further pressure on already stressed freshwater systems. Conversely, the potential of bioenergy plantations (BPs) dedicated to achieving NEs through CO2 assimilation may be limited in regions with low freshwater availability. This paper provides a first-order quantification of the biophysical potentials of BECCS as a negative emission technology contribution to reaching the 1.5 °C warming target, as constrained by associated water availabilities and requirements. Using a global biosphere model, we analyze the availability of freshwater for irrigation of BPs designed to meet the projected NEs to fulfill the 1.5 °C target, spatially explicitly on areas not reserved for ecosystem conservation or agriculture. We take account of the simultaneous water demands for agriculture, industries, and households and also account for environmental flow requirements (EFRs) needed to safeguard aquatic ecosystems. Furthermore, we assess to what extent different forms of improved water management on the suggested BPs and on cropland may help to reduce the freshwater abstractions. Results indicate that global water withdrawals for irrigation of BPs range between ∼400 and ∼3000 km3 yr−1, depending on the scenario and the conversion efficiency of the carbon capture and storage process. Consideration of EFRs reduces the NE potential significantly, but can partly be compensated for by improved on-field water management.University of Chicago Center for Robust Decision-making on Climate and Energy PolicyBMBF project BioCAP-CCSDeutsche Forschungsgemeinschaft SPP 1689 on ‘Climate Engineering: Risks, Challenges, Opportunities?’Peer Reviewe

    Future climate change significantly alters interannual wheat yield variability over half of harvested areas

    Get PDF
    Climate change affects the spatial and temporal distribution of crop yields, which can critically impair food security across scales. A number of previous studies have assessed the impact of climate change on mean crop yield and future food availability, but much less is known about potential future changes in interannual yield variability. Here, we evaluate future changes in relative interannual global wheat yield variability (the coefficient of variation (CV)) at 0.25° spatial resolution for two representative concentration pathways (RCP4.5 and RCP8.5). A multi-model ensemble of crop model emulators based on global process-based models is used to evaluate responses to changes in temperature, precipitation, and CO2. The results indicate that over 60% of harvested areas could experience significant changes in interannual yield variability under a high-emission scenario by the end of the 21st century (2066–2095). About 31% and 44% of harvested areas are projected to undergo significant reductions of relative yield variability under RCP4.5 and RCP8.5, respectively. In turn, wheat yield is projected to become more unstable across 23% (RCP4.5) and 18% (RCP8.5) of global harvested areas—mostly in hot or low fertilizer input regions, including some of the major breadbasket countries. The major driver of increasing yield CV change is the increase in yield standard deviation, whereas declining yield CV is mostly caused by stronger increases in mean yield than in the standard deviation. Changes in temperature are the dominant cause of change in wheat yield CVs, having a greater influence than changes in precipitation in 53% and 72% of global harvested areas by the end of the century under RCP4.5 and RCP8.5, respectively. This research highlights the potential challenges posed by increased yield variability and the need for tailored regional adaptation strategies
    • …
    corecore